
1

Language tutorial

Contents

1. Introduction 3

2. Filling a container 4

3. Time varying tap 8

4. A hole in the container 11

5. A controlled container 14

6. A cascade of containers 17

7. Containers as modules 20

8. References 24

2

Language tutorial

Introduction

3

Language tutorial

Introduction1.

MyM is an environment for the development, execu-

tion, and visualization of dynamic mathematical

models. The class of mathematical models that can

be used are systems of ordinary diff erential equa-

tions, diff erence equations, and algebraic equations.

This documents introduces the language for the

defi nition of mathematical models within MyM via

a series of examples. The language was designed so

that the specifi cation of the equations resembles the

standard mathematical notation as much as pos-

sible. Many examples are provided to specify these

equations. The purpose of this document is to pro-

vide an introduction tutorial to the MyM language:

the features of the language are introduced via a

series of examples. For a more complete description

see the MyM Language Reference manual.

One of the strengths of the MyM environment is its

applicability to many disciplines. All mathematical

models that can be described as systems of ordinary

diff erential equations can be handled, irrespective

of whether the subject is environmental science,

epidemiology, mechanical engineering, or systems

control. To explain the language however, we focus

on a single application area: fi lling and emptying

containers. This frees the reader from understand-

ing a variety of discipline specifi c details. We expect

that the reader can transpose the examples to his

own discipline. We also assume that the reader has

a little programming experience in a procedural

language, such as Pascal, Basic, or C.

Filling a container

4

Language tutorial

Filling a container2.

The begin with the most simple example. A con-

tainer is fi lled from a tap (fi gure 1). The fl ow of water

from the tap is f
in
. The volume of water w in the

container can then be described by:

where w
0
 is the volume for t = 0. If the container has

a cross sectional area A, then the height h of the

water level is given by:

w

�

t

� � w � �

f �� t

h � w

�

A
Here the assumption is made that A is large com-

pared to f
in
.

fin

h(t)
volume w(t)

area A

 Figure 1 Filling a container

Filling a container

5

Language tutorial

If we translate these mathematical equations in a

MyM model, we get:

The MyM model is almost a direct translation of the

mathematical model. Therefore understanding the

MyM language code above should be easy.

		
 � � � �
 � � � �
 � � �
 � �	� � �� � � � � �
 �� � � �
� � � � �� � � � �� � � 	 � � � � � � � � � �� � � � ! � �
 � " � � � 	
 � � � �
 � � � �
 � � �
 � �� � � � � # � $ � 	 � � � � � �
 � �
 � � �
 � �� # � $ � �� � % ! � �
 & � � 	 � � � � � � '� � � � �
� � � � (� "� � � 	 (� � � � � �))) � � � � �
� �
 � � �
 � �� � � � * # � $ � 	 + � � � � � � , � �* � � - (� 	 . � , � � � '� � � � �
�
 � �

Some remarks: All text on a line after an exclamation

mark is ignored, and is considered to be comment.

The notation is free format, i.e. spaces, tabs, and

new lines have no special meaning. Also, no distinc-

tion is made between lower-case and upper-case.

The declarations in the following example:

are equivalent to

although their readibility differs of course.

The MyM language is based on modules. A model

consists of a number of connected modules. In

every MyM model at least one module must be

defi ned: the main module. In the following sections

we will use only this module. In section 7 the use of

modules is discussed in more detail.

� � � � � � � � � � � �/ � (��� / � � � 0 �

Filling a container

6

Language tutorial

The statements can be placed in an arbitrary order.

The only condition to be satisfi ed is that a variable

is declared before it is used. The variable

1
, the

current time, is always automatically declared. Since

MyM concerns dynamical models,

1
 plays an impor-

tant role. Later on we will see more examples of its

use and how it is controlled.

For the mathematical expressions the same style as

in procedural programming languages, like Pascal

and Fortran, is used. Operators such as

2
, 3 , 4

, and 5
 can be used, where the usual rules of precedence

apply. Parentheses can be used to group parts of the

expressions.

In the last expression (

6 7 8 5 9
) the dependency

on time is not explicitly stated. The variables h and

w were declared as time dependent, so MyM already

knows that these variables depend on time. If de-

sired however, the equation can also be notated as 6 : 1 ; 7 8 : 1 ; 5 9
.

At a lower level a MyM model can be considered a

sequence of statements. Each statement is termi-

nated by a semi-colon. In the example two types of

statements are used: declarations and equations. A

declaration serves to make known to the system that

a variable exists and what its properties are. Here all

variables are declared as real variables, internally to

be represented as fl oating point numbers. Further,

the volume 8 : 1 ;

 and the height

6 : 1 ;

 are declared

as functions of the time

1

. Adding

: 1 ;

 after the

variable name suffi ces.

Two equations are used in the example. Equations

in MyM all have the same format. A dependent

variable at the left side is defi ned to be equal to a

mathematical expression at the right side. Here 8 : 1 ;

 and

6 : 1 ;

 are the dependent variables. The

variables 8< =

,

> < ?@ , and

9
 are input variables,

because they do not occur at the left side of an

equation. Their value can be set and changed via

one of the user interfaces of MyM. An initial default

value can be specifi ed with the declaration: just add

=, followed by a numerical value.

Filling a container

7

Language tutorial

An important fi nal remark. A MyM model often

looks deceivingly like a computer program. How-

ever, it is not !

The basic statement in a procedural programming

language is the assignment. For instance, A B A C D

means increment the value of x with 1. The basic

statement in a MyM model is the equation: E B F

means that a is equal to b, for all values of t. Hence,

the MyM equation A B A C D

 makes no sense,

because there is no value of A that can satisfy this

equation.

If the user of MyM has a strong programming back-

ground, this will require a mental shift. Once again:

MyM is about mathematical models, built up from

equations. It is a functional language, not a proce-

dural language.

Time varying tap

8

Language tutorial

Time varying tap3.

In “Figure 1 Filling a container” on page 4 the

tap is open forever: f
in
 is constant. The eff ect of

an infl ow f
in
(t) that varies as a function of time is

more realistic and interesting. However, the simple

linear relation between w and t does not hold then

anymore. It must be replaced by the following more

general integral equation:

Obviously, if f
in
 is constant, the solution of this

integral equation is the linear equation presented

before. We can also describe w(t) via a diff erential

equation and an initial condition:

dw/dt = f
in
 , w(0) = w

0

Although integral and diff erential equations are

mathematically equivalent, in many cases integral

equations better match the process described in a

semantic sense. The following MyM model de-

scribes the container with the time varying tap.

w(t) = w
0
 +

0
 ∫

t
 f

in
 dt’

A number of changes were made to the preced-

ing model. On the fi rst line four real variables are

declared in a single declaration. To this end the

variables are listed, and separated by commas.

The variable

GH IJ K L M

is now declared as time

dependent. Via the graphical user interface its value

fin ACc

fout w

fin ACb

fout w

fin ACa

fout w

wtot

fa fb4.0
Main

Figure 2 Infl ow as a function of t

Time varying tap

9

Language tutorial

can be entered by drawing a graph. Default values

that vary with

N
 can be specifi ed in the declaration

as a list of time/value pairs, enclosed by square

brackets. These values are interpolated linearly.

OO P QR S T U V W QX Y Z U [OR \]^ _ S R U Q X̀a S Y Q XV S U _ bc d e f dg h e ij d g b k Z l g m k Z l `V S U _ n c Q X k Z l e o d g dg O n c QX k d l e df g i g O n c QX k f l e ip g i g O n c QX k p l e iq g d r ` O n c QX k q l e dZj R Q X e d ` O s Z U V Z T U _ Ŝ ZZj R U t e q ` O SX] T U _ Ŝ ZZj s Z S [e dj f ` O s Z S [s Qu S n \ V Q X Z SvY V U Z Q \XZj R S Z m \] e w x i ` O y s S s S z \X] \ V] S Vw X̂ Y S x^ Z Z UZj s UR [_ S e dj i ` O s UR [_ S V U Z Sb k Z l e Q X Z S Y k n c QX g bc d l `O { X Z S Y V U _ S |̂ U Z Q \X T \ _ R̂ Sm e b } h `SX] `

Here we specify that from

N ~ �
 to

�
 the tap is

opened, it remains open for three units of time, and

then it is closed (fi gure 2).

In the next fi ve statements we specify values of attri-

butes of t. Such statements are called specifi cations.

First, we state that we are interested in the time

interval from

�
 to

�
. The simulation should start at N ~ �

 and stop at

N ~ �
. For the calculation of

the values of the variables a numerical integration

procedure is used. The step size of

N
 to be used is �� �

, and the method to be used is the second order

Runge Kutta method. Currently, three methods are

available: fi rst, second and fourth order Runge Kut-

ta. The keywords

� � �
,

� � �
 and

� � �
 refer to these

methods. First order, also known as Euler’s method,

is the simplest. For a description of these methods

see [recipes]. Finally, with

N� � � � � �� we specify

the sample rate at which values of the variables are

stored for processing by the user interfaces.

All these specifi cations serve as defaults: they can

be overruled via the user interfaces. If no specifi ca-

tions are used, the following default values are

assumed:

Time varying tap

10

Language tutorial

For integral equations MyM provides the func-

tion

�� �� � �� � � �

. Here � is the expression to

be integrated and

�

 is an expression for the initial

value. Two restrictions apply to its use. The

�� �� �
function may not be used in combination with other

variables or constants, and it may not be nested.

Thus, the following

gives an error message.

�� � �� � ���� � � � ¡��� ¢ �£ ¤ � � � ¡��� �£ � ¥¦ § � ©̈ ª ��� ¢ � � ¤ « £ � � � ¡�
¬ ­ � ® � �� � £̄ ­ � � � £̄ ­ °± �� ² � ® ²¬± � ® ³ ¡ � � ´ ¬ µ ¦ �̄ ´

A hole in the container

11

Language tutorial

A hole in the container4.

Let us assume that the container has a small hole in

its wall (fi gure 3). The vertical distance of the hole to

the bottom of the container is d. If h > d, water will

leak out of the container. The velocity v of the water

at the hole is given by the theorem of Torricelli:

where g is the gravitational constant (9.81 m/s2). The

outfl ow f
out

 is given by:

where S is the area of the cross section of the hole,

and C is the constant of contraction. For a circular

hole in a thin wall its value is 0.62 . The integral

equation for w(t) has to be changed to incorporate

the outfl ow:

v = √ (2gi max(h-d, 0))

f
out

 = CSv

w(t) = w
0
 +

0
∫

t
 f

in
 - f

out
 dt’

Figure 3 A hole in the container

fin

fout

d

h(t)

volume w(t)

area A

area hole S

A hole in the container

12

Language tutorial

For the constants ¶ and

·
 a new type of statement

is used: the defi nition. Such statements consist

of the keyword ¹̧ º » ¼
, a symbolic name of the

constant, followed by an equals sign and its numeric

value. In later equations the value can be referred to

symbolically by its name. Also, constants are hidden

by the user interfaces. Their value can not be shown

nor changed by the user. If the latter is not desired,

e.g. NASA asks us to study containers on the moon,

such constants can be changed to standard vari-

ables with a suitable default value.

Beside some declarations, also two equations were

added. The equation for ½ ¾ ¼ ¿
 shows the use of

standard functions. The function » À Á ¼
 gives the

square root of its argument. Many standard math-

ematical functions (trigonometric, exponential, ceil-

ing, etc.) are provided. The function Â Ã Ä gives the

maximum value of its arguments. A variable number

of arguments can be used. Also Â Å º and Ã ½ ¶ can

be used, which give the minimum and the average

value of their arguments.

ÆÆ Ç ÈÉ ÊË ÌÍ Î ÈË Ï É Í ÎÐ ÌÍ Ë ÑÆÒ É ÓÔ ÊË Ò Ð ÌÍ ÕÖË × ÌÍÏ É Í Ø Î × Ù ÚÛ Ü Ý Õ Æ Þ ÑÐ ß Ì ÎÐ Î Ì É Í Ð Ê Ï É Í àØ ÎÐ Í ÎÏ É Í Ø Î á Ù â Û ã ä Æ á É Í Ø ÎÐ Í Î É å ÏÉ Í Î ÑÐ Ï Î Ì É ÍÑË Ð Ê æç â Ù Ý âè Ç Ù ä Û âè æ é Î ê è È é Î ê ÕÑË Ð Ê å ç ÌÍ é Î ê Ù ä ÕÑË Ð Ê Ó Ù â Û ä Õ Æ ÈË Ì × È Î É å ÈÉ ÊËÑË Ð Ê Ø Ù â Û Ý Õ Æ Ð ÑË Ð É å ÈÉ ÊË ÕÑË Ð Ê ß é Î ê Õ Æ ßË Ê É Ï Ì Îë Ð Î ÈÉ ÊËÑË Ð Ê å ç É Ô Î é Î ê Õ Æ É Ô Î ìÉ æ Î È Ñ É Ô × È ÈÉ ÊËÎÛ Ò ÌÍ Ù â ÕÎÛ Ò Ð í Ù î ÕÎÛ Ø ÎË ï Ù â Û Ý ÕÎÛ Ò Ë Î ÈÉ Ó Ù ð ñ ä ÕÎÛ Ø Ð Ò ï ÊË Ù â Û ä Õß é Î ê Ù Ø ò Ñ Î é ä Û â ó × ó Ò Ð í é È à Óè â ê ê Õå ç É Ô Î é Î ê Ù á ó Ø ó ß Õæ é Î ê Ù ÌÍ ÎË × é å ç ÌÍ à å ç É Ô Îè æç â ê ÕÈ Ù æ ô Ç ÕË Í Ó Õ

The new MyM model becomes:

A hole in the container

13

Language tutorial

In the fi rst equation

õ

 is already used, while the

value of

õ

 is defi ned by the fourth equation. MyM

takes care of this automatically. The equations are

sorted in such a way that each value is calculated

before it is used.

The fi rst three equations (v(t), f_out(t) and w(t)) can

be replaced by:

and the declarations of ö ÷ ø ù

 and

úû ü ý ø ÷ ø ù
 can

be removed. This equation is more compact, but

harder to understand and the removed variables

cannot be inspected anymore with respect to their

values and relations with other variables.

It is up to the developer of the model to decide

which level of detail is modelled.

þ ÿ� � � �� � � � ÿ � � � � 	
 �� ��
 �� ÿ �� � � � �� � � ÿ � 	 �� � � � � þ � � ��

A controlled container

14

Language tutorial

A controlled container5.

Suppose we want to control the level in the con-

tainer, i.e. keep it as close as possible to a constant

reference level href (fi gure 4). To this end we hire an

operator that controls the tap. The rule he applies is:

{
0 if e < 0

fc(e) = f
max

e/e
max

if e ≥ 0 and e < e
max

f
max

otherwise

where e is the deviation from the reference level

Unfortunately, the operator has a delay t
∆
 in his re-

sponse. Therefore, the actual infl ow f
in
(t) is given by:

The corresponding MyM model is:

f
in
(t) = f

c
(h (t - t

∆
) - h

ref
)

fin

fout

volume w(t)

area A

area hole S

h(t)

href

fc(e)

e

emax

fmax

control

e(t−t∆)

e(t)

delay t∆

Figure 4 A controlled container

A controlled container

15

Language tutorial�� � � � � �� � ! " � � � �# $ �! ��% � "& ! % # $ � '� � � (�) * +, - ./ 0 * 1 , 2 3 '� ! # 45 1 * . 1/ � * 3 , 1/ 4 6 � 7 / 8 6 � 7 '� ! # " * 1, 3/ (* 1, ./ 9 6 � 7 / : 5 $ � 6 � 7 / : 5 � & � 6 � 7 '� ! # 8 5 � ! : * ; , 1 ' � � ! :! � ! � �! 8! $) 8 �� ! # ! '� ! # : 5 � 6 ! 7 ' � $ � < � 4 # (: & � � � $ � �� : ! � � �� !� ! # : 5 % # = * 3 , 1 ' � % # = $ % & % $ � < � 4� ! # ! 5 % # = * . , 1 ' � � �� � ! (> � � " $ �) ! � � ��� ! # � 5 "! * . , 1 ' � "! # ? � : � � � �� � �, % $ � * 1 '�, % # = * @ '�, (�! > * 1 , . '�, % ! � 8 � " * A B 3 '�, (# % > ! * 1 , 3 ': 5 � 6 ! 7 * (4 $ � � 8 6 ! C 1 D 1 /! C ! 5 % # = D : 5 % # = E ! F ! 5 % # =/! (! : 5 % # = 7 ': 5 $ � 6 � 7 * (4 $ � � 8 6 �G � 5 "! H �, % $ � D: 5 � 6 8 5 � ! : G 8 6 �G � 5 "! 7 7 /! (! 1 7 '9 6 � 7 * (I� � 6 3 , 1 E) E % # = 6 8G "/ 1 7 7 ': 5 � & � 6 � 7 * 0 E (E 9 '4 6 � 7 * $ � �!) 6 : 5 $ � G : 5 � & �/ 45 1 7 '8 * 4 F � '! � " '

In this example three new features of the language

are introduced. The function

J K L MN O
 is defi ned as

a function of N , which is a user defi ned free variable.

The right side of the equation contains an expres-

sion in N . The use of time dependent variables or

P

itself is not allowed here. Such functions must be

independent of time. The value of these functions

can be entered as data with the declaration, or can

be defi ned with an equation.

The Q R S P L T
 function serves to handle conditional

functions. The argument list after the Q R S P L T
 con-

tains a series of Boolean expressions, followed by a

question mark and a value. The Boolean expressions

are evaluated in order until one of them is true. The

value after this expression is then used. If none of

them matches, the value after the keyword N U QN is

used.

A controlled container

16

Language tutorial

A general mechanism is provided to handle delays.

For all time dependent variables instead of

V

 an

expression can be used as argument. The calculated

values of such variables are stored, and via interpo-

lation the requested values are determined.

Only values from

VW X YZ to

V

 are known, so a [\ Y V] ^

 function has to be used if values outside

this range are requested.

A cascade of containers

17

Language tutorial

A cascade of containers6.

Suppose that we have a container with a hole and a

time varying infl ow. What will happen if we catch the

outfl ow of this container in another container?

And this output in another one?

Let’s generalize. We have a cascade of N containers

(fi gure 5), where the infl ow of container i is the out-

fl ow of container i _ `

 for i a b

, ..., N. We ignore the

delay caused by the distance between the contain-

ers, and we assume that the geometry of all contain-

ers is the same.

The initial volume in the fi rst container is w
0
, the

others are empty. Further, we are interested in the

total volume w
tot

 in all containers together:

The following MyM model does the job:

w
tot

 = ∑
N

i=1
w

i

Figure 5 A cascade of containers

fin

1

2

N

fout,1

fout,2

fout,N

A cascade of containers

18

Language tutorialcc d e f g e f hi j k e j l m f n l i o gcp j hq r i p f n l st i u n le j l g m u v wx y z{ | v } x ~ � so i f r �� } v z }{ d v � x }{h v } x �{ g v }x z se j l g m � v � s c l q p t i o j k e j l m f n l i o g so i f r k � n l � m � v � }{ }{ z{ � { � { � { �{} � s c � j o i f e � e j l m f n l i o �o i f r � � � � � m � s c � j r q p i {o i f r � � � � � m � s c � f m i o r i � i r{o i f r k � j q m � � � � m � s c j q m � j �{ f l ho i f r � � � � � m � s c �i r j e n m� f m � j r i xo i f r � � m j m � m � s c m j m f r � j r q p imx p n l v } smx p f � v � smx g m i � v } x z smx p i m � j h v � � � smx g f p � r i v } x � s� � m � v g � o m � � x } � u � p f � � �� h{ } � � sk � j q m � m � v | � g � � s� v � � d s� � z � � m � v n l m i u � k � n l � k � j q m � z � { � � } � s� � n � � m � v n l m i u � k � j q m � n � z � �k � j q m � n � { } � { n v � m j � s� � m j m v r g q p � n v z m j �{ � � n � � si l h s

Indexed variables are represented in MyM as arrays.

The example shows a number of features that are

provided to simplify their manipulation. The num-

ber of containers is N, defi ned as a constant. The

parameters for each container (�, �
,

�� � � �
, and �)

are declared as arrays. Each array has

 elements,

indexed from

¡
 to

. Here only one-dimensional

arrays were used, but MyM permits up to twenty

dimensions for arrays.

Probably most surprising are the fi rst three equa-

tions. These are the same as in previous versions

of the model. The language provides a mechanism

called implicit loops. If the dependent variable is

an array, then the subscripts at the left side, as well

as the subscripts of arrays with the same dimen-

sions as the dependent variable, can be dropped.

The equation is automatically assumed to hold for

all elements of the array. Note that to use diff erent

areas for the containers only a diff erent declaration

of

¢
 is required.

This mechanism cannot be used for � £ ¤ ¥ ¦ � §

,

because the fi rst container must be treated diff er-

ently than the other containers. The equation for the

volume of the fi rst container is:

A cascade of containers

19

Language tutorial

Here explicit references are made to the fi rst ele-

ments of the arrays ¨ and

©ª « ¬ ­

. For the remaining

containers the infl ow of ® container i is the outfl ow

of container i ¯ °

, with i ± ²

, ..., N. For this equation

we use an explicit loop, appended to the equation:

The equation is defi ned in terms of

³
, where the

loop variable

³

 varies from two to N. The loop

variables

³

,

´

, and

µ

 are predefi ned integers, and do

not have to be declared.

¶ ·̧ ¹ º» ¼ ½ ¾¿ » À Á º ÂÃ ¾¿ Ä ÂÃ Å Æ» ·̧ ¹Ç ¶Ã È ¼É

¶ · ¾ ¹ º » ¼ ½ ¾ ¿ » À Á º Â Ã Å Æ» · ¾ Ä ¹̧ ÄÂ Ã Å Æ» · ¾ ¹ Ç È ¼ Ç ¾ ½ Ê » Å ËÉ

Finally, for the calculation of ¨ª ­ « ­
 yet another

feature is used. The function

ÌÍ ¬ Î is an example of

a loop function. It takes a loop and an expression as

arguments. The expression is evaluated for all values

of the loop variable, and, in case of
ÌÍ ¬ Î, they are

added. Other available loop functions are

ÌÏ Ð « Ñ
, Ì ® Ò Ó, Ì Î ³Ô , and

Ì Î ® Õ, which respectively return

the product, the average, minimum, and maximum

value of the expressions.

Containers as modules

20

Language tutorial

Containers as modules7.

Suppose we have really made it in the container

business. Each day requests for new simulations of

diff erent confi gurations enter our offi ce. How can we

handle this effi ciently?

The MyM language off ers a tool for this: modules.

We model a general container, which we reuse in

each simulation.

Consider the example in fi gure 6. The two containers

C
a
 and C

b
 have infl ows f

a
 and f

b
. Their outfl ow goes

into a container C
c
. The area of this last container is

4, while the area of a default container is 2. Again,

we are interested in the total volume w
tot

 of all con-

tainers together.

The following MyM model on the next page handles

this. One general container is defi ned as a module,

and we make three instances of it:

fa

Ca
fout,a

fb

Cb
fout,b

Cc
fout,c

Figure 6 Containers as modules

Containers as modules

21

Language tutorialÖÖ ×Ø Ù ÚÛ Ü Ù Ý Þ ß Û ß àØ áâ ã Ý ßÖä Ø Ù ß Ú å æ çè é êë × æ ì è í îïàØ áâ ã Ý × ð ñ ò ó ô ñ õ öï÷ Ý å Ü ÙÜ à øØ Þ Ú Þ ÝÛ ã ùú Ü Ù û Ú ü ïÜ à øØ Þ Ú Þ ÝÛ ã ó æ î è ìë ß æ ì è êë á æ ì è îïÝ ý øØ Þ Ú Þ ÝÛ ã þ û Ú ü ë ùú Ø â Ú û Ú ü ïÞ ÝÛ ã ÿ û Ú ü ë � û Ú ü ï� û Ú ü æ ß � Þ Ú û î è ì � å � àÛ ý û ÿ� áë ì ü ü ïùú Ø â Ú û Ú ü æ × � ß � �ïÿ æ þ � óïþ û Ú ü æ Ü Ù Ú Ý å û ùú Ø â Ú � ùú Ü Ùë ì ü ïÝ Ù áïàØ áâ ã Ý � ó ô ñï÷ Ý å Ü ÙÞ ÝÛ ã ùÛ û Ú ü æ � ìë ìë êë î ë � ë î ë �ë ì 	 ïÞ ÝÛ ã ù ÷ û Ú ü æ � ìë ìë êë î ë � ë î ë �ë ì 	 ïÞ ÝÛ ã þú ÚØ Ú û Ú ü ï× ð ñ ò ó ô ñ õ ö ×Û ë × ÷ë × ä ïÚè à Ü Ù æ ìïÚè àÛ ý æ �ïÚè ß Ú Ý ø æ ì è êïÚè à Ý Ú ÿØ á æ ö
 îïÚè ß Û à ø ã Ý æ ì è îï× ä è ó æ � è ìï×Û è ùú Ü Ù û Ú ü æ ùÛ û Ú ü ï× ÷è ùú Ü Ù û Ú ü æ ù ÷ û Ú ü ï× ä è ùú Ü Ù û Ú ü æ ×Û è ùú Ø â Ú û Ú ü � × ÷è ùú Ø â Ú û Ú ü ïþú Ú Ø Ú æ ×Û è þ � × ÷è þ � × ä è þïÝ Ù áï

First, some constants are set. Next a general

container is defi ned as a module. In this module

some variables are declared and their relations are

described with equations. Figure 3 shows the mean-

ing of these variables.

The main purpose of modules is hiding complexity.

Viewed from the outside the container has a simple

function, while the actual defi nition and implemen-

tation is hidden. A module can thus be used as a

black box. Let’s see how this black box communi-

cates with its environment.

We are not interested in the internal, or local vari-

ables
�
 � �

 and �
 � �
. Therefor they are declared

in the standard way, and hence their value can

only be used inside the module. However, we want

to control the infl ow

�� ��
 � �
 from outside the

module. To this end the keyword

�� � � � �

 has been

put before the declaration of

�� � �
 � �

. Thus, its

value can be imported from the outside world. Also,

we want to have the possibility to describe diff erent

geometries of the container. We therefore declare

�

, � , and

�
 also as import variables, and provide suit-

able defaults.

Containers as modules

22

Language tutorial

The result of the process in the container is the

outfl ow

�� � � ! "

 and the volume # ! "

. The

keyword export has been put in front of their decla-

ration, and then we can use these export variables

outside the module.

Summarizing, within a module three types of vari-

ables can be declared: local variables, which can only

be used inside the module; import variables, which

value can be imported from outside the module;

and export variables, which value can be exported

outside the module. A fourth type are global vari-

ables. Variables declared outside all modules can be

used in all modules.

Next we apply this general purpose container. The

module MAIN describes the total model. Here fi rst

two infl ows are declared and initialized, and the to-

tal volume is declared. The crucial statement is now:$ % & ' () & * + $, - $. - $/ 0

With this statement we create three instances

12 , 1 3

, and

14 of the standard container. This state-

ment is similar to the declaration of standard

variables: with

we create three named instances of the standard

type real variable. With the following statements we

connect the variables of the three instances:

5 6 , 7 8 - 9 - : 0
$/ ; (< = ; > 0$, ; ?@ AB CD E < ?, CD E 0$. ; ?@ AB CD E < ? . CD E 0$/ ; ?@ AB CD E < $, ; ?@ F GD CD E H$. ; ?@ F GD CD E 0I@ D FD < $, ; I H $. ; I H $/ ; I 0

Containers as modules

23

Language tutorial

The values of variables inside the instance are

referred to by the sequence instance_name, period,

variable_name. Import variables may only be used

in the left side of an equation, export variables may

only be used in the right side. With the fi rst state-

ment we set the area of container

JK to 4. The areas

of other containers keep the default value, and also

for the other geometric variables we rely on the

defaults. Next we specify that the infl ows

LM and

fb go into container

JM and

J N

 respectively, and

that container

JK receives the outfl ow of

JM and J N

. Finally we specify that the total volume OP QR Q

is equal to the sum of the volumes of the three

con tainers. Figure 7 shows the result in terms of

modules, instances, and datafl ows.

Figure 7 Data fl ow between modules

fin ACc

fout w

fin ACb

fout w

fin ACa

fout w

wtot

fa fb4.0
Main

References

24

Language tutorial

References8.

[1] MyM Language Reference Manual, 2008, Tizio.

[2] Press, W.H., Flannery, B.P, Teukolsky, S.A., Vetterling, W.T.

 Numerical Recipes in C : The Art of Scientic Computing, Cambridge University Press, Cambridge, 1988.

